
 [Dabey, 1(7): Sep., 2012]

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology

IJESRT
INTERNATIONAL JOURNA

Improve Security in a Software Development Life Cycle

*1,2

Software Security is an essential dimension of software quality and should be part of an overall effort to consistently
measure and improve the quality of the software development and integration practices. Effective Software Security
Management has been emphasized mainly to introduce methodologies which are Practical, Flexible and
Understandable. Software Security describes the need and methodology of improving the current posture of
Application Development by integrating Software Security. It attempts to
organizations to understand how they can align software security in their SDLC.
Security brings value to software in terms of people’s trust. The value provided by secure software is of vital
importance because many critical functions are entirely dependent on the software. That is why software security is
a serious topic which should be given proper attention during the entire SDLC, ‘right from the beginning’. Security
is an important property of any software. Many applic
lacks strong integration of software security. The growing need to address software security measures across
development life cycle. Application Security can be seamlessly integrated in the SDLC b
or process within the development phases.

Key words: - Security rules, integration security with SDLC, Threat modeling, code review, education & training.

Security Rules
The various issues encompassing software security is
a point of discussion and debate among the
researchers and security practitioners. One obvious
way to spread software security knowledge is to train
software development staff on critical software
security issues. Beyond awareness, more advanced
software security training should offer coverage of
security engineering, design principles and
guidelines, implementing risks, design flaws, analysis
techniques, and security testing.
All software developer must obey these rules in order
not to introduce vulnerabilities into the system and
ensure the production of secured software system. By
analyzing the implementation results, it is observed
that if the software engineers have these rules at the
back of their minds throughout the stages of the
software production, it will ensure efficient
production of secure software product to a greater
extent. These rules are given as follows:

1. Rule of Awareness
2. Rule of Prevention
3. Rule of Confidentiality
4. Rule of Integrity
5. Rule of Availability

 ISSN: 2277

International Journal of Engineering Sciences & Research Technology

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH
TECHNOLOGY

Improve Security in a Software Development Life Cycle
 Ruchi Dabey*1, Vishnu Kumar2

2, Suresh Gyan Vihar University, India
 rushi.dabey@gmail.com

Abstract
Software Security is an essential dimension of software quality and should be part of an overall effort to consistently
measure and improve the quality of the software development and integration practices. Effective Software Security

mphasized mainly to introduce methodologies which are Practical, Flexible and
Understandable. Software Security describes the need and methodology of improving the current posture of
Application Development by integrating Software Security. It attempts to provide an effective platform for
organizations to understand how they can align software security in their SDLC.
Security brings value to software in terms of people’s trust. The value provided by secure software is of vital

cal functions are entirely dependent on the software. That is why software security is
a serious topic which should be given proper attention during the entire SDLC, ‘right from the beginning’. Security
is an important property of any software. Many applications are outsourced too where the application development
lacks strong integration of software security. The growing need to address software security measures across
development life cycle. Application Security can be seamlessly integrated in the SDLC by introducing specific steps
or process within the development phases.

Security rules, integration security with SDLC, Threat modeling, code review, education & training.

The various issues encompassing software security is
a point of discussion and debate among the
researchers and security practitioners. One obvious
way to spread software security knowledge is to train
software development staff on critical software

ty issues. Beyond awareness, more advanced
software security training should offer coverage of
security engineering, design principles and
guidelines, implementing risks, design flaws, analysis

obey these rules in order
not to introduce vulnerabilities into the system and
ensure the production of secured software system. By
analyzing the implementation results, it is observed
that if the software engineers have these rules at the

inds throughout the stages of the
software production, it will ensure efficient
production of secure software product to a greater
extent. These rules are given as follows:

6. Rule of Access Control
7. Rule of Accuracy
8. Rule of Consistency
9. Rule of Authorization
10. Rule of Privacy

Integration Security With SDLC
The main objective of proposed security model
comes up with the following:

1. Well oriented- software
cycle with security (stages that include
development, usage, maintenance).

2. Well formulated requirement specification
(both functional and non
requirement)

3. Well defined software development model
(engineering model)

4. Well integrated with security (security
include in designing, development and
testing models)

Most of the applications were development following
process that is easily customizable to their
management needs. Organization were unaware of
the fact that security issue those were not addressed

ISSN: 2277-9655

International Journal of Engineering Sciences & Research Technology[399-405]

ENCES & RESEARCH

Improve Security in a Software Development Life Cycle

Software Security is an essential dimension of software quality and should be part of an overall effort to consistently
measure and improve the quality of the software development and integration practices. Effective Software Security

mphasized mainly to introduce methodologies which are Practical, Flexible and
Understandable. Software Security describes the need and methodology of improving the current posture of

provide an effective platform for

Security brings value to software in terms of people’s trust. The value provided by secure software is of vital
cal functions are entirely dependent on the software. That is why software security is

a serious topic which should be given proper attention during the entire SDLC, ‘right from the beginning’. Security
ations are outsourced too where the application development

lacks strong integration of software security. The growing need to address software security measures across
y introducing specific steps

Security rules, integration security with SDLC, Threat modeling, code review, education & training.

Integration Security With SDLC
The main objective of proposed security model

software development life
cycle with security (stages that include
development, usage, maintenance).
Well formulated requirement specification
(both functional and non-functional

Well defined software development model

ated with security (security
include in designing, development and

Most of the applications were development following
process that is easily customizable to their
management needs. Organization were unaware of
the fact that security issue those were not addressed

 [Dabey, 1(7): Sep., 2012] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[399-405]

properly during all these processed are going to fit
them back with a much greater impact. The
organization should have clear objectives, a team to
complete or facilitate the completion of these
objectives, and a formal, documented project plan
describing the tasks required to attain Sustained
Maturity. The next critical step is implementing the
plan in a phased approach that will be easier to
accommodate.
Secure application development, from design to
maintenance, will be new ground and possibly a
culture change. Security brings value to software in
terms of people’s trust. The value provided by secure
software is of vital importance because many critical
functions are entirely dependent on the software.
That is why security is a serious topic which should
be given proper attention during the entire SDLC,
‘ right from the beginning’. Implementing security in
software from the very stages of its development
makes the system as vulnerable and faults free as
possible. It also provides mechanism for quick
recovery by the system from the damages caused by
failure. It ensures that the system continues to operate
under most adverse condition created due to the
various attacks on the system. In doing so, the system
provide a mechanism of resistance against the
attacker who tries to exploit the weakness in the
software. It also provides a tolerance level of such
failures resulting from such exploits.

Work Flow of SDLC With Security Features
We can describe a diagram that show work flow of
software development life cycle with advance
security features.

Proposed Security Model In SDLC
Let us discuss the following model to align
application security in the SDLC. Several well-
known Software Development Life Cycles (SDLCs)
integrate security in different ways. Although many
versions of this model exist, the SDLC generally
starts with a requirements specification phase
followed by design, implementation, testing,
deployment and maintenance phases. Security can be
integrated into any (and ideally all) of these phases.
In most organizations security is included with the
toll gate style mentioned previously, often at the end
of each phase before moving to the next one. It is,
however, critically important to ensure that security
is prioritized during the requirements specification
phase and carried out at every phase, particularly in
organizations where developers and QA teams are
responsible for policing themselves. If security drives
the software development life cycle process, the
responsible parties must work with developers to
determine their needs and provide input during every
step. This process enables the applications to be built
securely while helping development teams to
maintain a reasonable schedule. The seven principles
should be considered design principles when
developing or enhancing an existing software
security assurance program.
The Framework addresses the following key
component areas:

1. Education & Training
2. Requirement Gathering
3. Secure Design
4. Threat Modelling
5. Secure Coding Practices
6. Security Testing
7. Deploy & Maintenance

Education And Training
Awareness amongst the team members regarding
application security issues is a must. The
professionals must be able to foresee and address
application security. You can think of having

 [Dabey, 1(7): Sep., 2012] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[399-405]

different training courses to train your team to
inculcate culture of application security throughout
the lifecycle. You can also think of getting
technology specific training courses to help
developers understand and tackle issues easily.
Educating the team on application security to help
build resilience in them to withstand the adverse
attacks and also think about them prior to designing
applications. One of the better ways of training
developers is demonstrating the vulnerabilities or
exploits in their application or dummy application to
help them realize how attackers work on. This
perspective is very necessary to bring security in
development phase. It helps them evaluate any
module they work on with a mindset of how it can be
hacked and how it can be mitigated.

The Secure Software Implementation identifies the
essential components and principles of a mature
software security program. A primary criterion for a
successful program rests with the level of influence
and change in behavior of application developers and
systems integrators. There are many complex
technical challenges in deploying vulnerability
detection and management capabilities within a
software security program for medium and large
organizations, but all successful programs share a
common commitment to education and training. An
effective measurement of program maturity is to poll
application developers to determine if they know the
difference between software vulnerability and a
software defect. If the majority of developers answer
that vulnerabilities and defects are one in the same,
then the education program can be considered

successful. In fact, this is the single moment of truth
for developers embracing secure development
practices.

Requirement Gathering
Separate Security Requirements from Functional
Requirements to facilitate explicit review and testing.
Gather all the possible application security
requirements from the customer. The customer may
not be aware of the security risks, risks to the
business objective and vulnerabilities that could
creep in while building an application. In these cases,
ask the customer for security requirements. Map
specific security objectives in order to derive a secure
design. The security objectives are based on
understanding of what risks the end user might be
exposed to and the risk to customer brand if security
is compromised. For e.g. the objective that – only
authorized users can access the application is the
objective. This objective should be mapped to series
of requirements. In the above example, a password
protection mechanism could be implemented that
enforces strong passwords (at least eight characters in
length with a mandatory mix of numeric, upper case,
lower case and special characters). The user account
can be locked on five consecutive failed logon
attempts.

 Secure Design
There are two security activities that take place in this
phase. The first security activity is to perform a more
detailed risk assessment for each major system
function and for the overall system. Based on this
detailed risk assessment, security controls are
selected to mitigate the risks identified. For example,
because there is a high risk that backup media can be
lost or stolen, the design team specifies that
encryption is applied to the backup media to mitigate
this risk.
The most effective practices in improving security
architecture typically center on minimizing the
publicly available application features. This principle
is often called as reducing the surface area of attack.
Document the assumptions and identify possible
known attack scenarios against the system. Produce
combined formal application specifications and
security requirements specification. A much known
activity adopted during this phase is called Threat
Modeling. This is a technique used to understand and
analyze threats against the system before it is built. It
is primararily intended to identify architectural flaws
rather than code level flaws. The basic steps in a
Threat Modeling activity include Decomposing of
Application, Defining Application Components &
External Dependencies and Modeling the System to
resolve threats. Review the design of the application

 [Dabey, 1(7): Sep., 2012] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[399-405]

from security standpoint by enumerating all possible
avenues of attack. This activity is genuinely helpful
and does not have to be difficult. There are several
threat, attack and vulnerability modeling tools and
techniques. Microsoft in particular has emphasized
Threat Modeling and had also provided a tool to
enable modeling. The aim is to identify threats
against each of the use case scenarios, system
processes, data, transactions and functions. The
common threats uncovered include possible loss in
confidential data, unauthorized access, possible
denial of service attacks, etc. By identifying all
inappropriate actions that could be taken, we would
capture all actions of malicious system use. This
would help in mitigating the risks associated with the
malicious system use. The risk response could be one
which removes the risk, reduces the risk, transfers the
risk or accept the risk.

Threat Modeling
It’s common for security teams to receive reports of
vulnerabilities with requests for immediate action to
eliminate them. One big source of these requests is an
organization’s internal audit team. Another common
source of fix-it-now-because-the-press/vendor-says-
it’s-critical messages is management, including many
IS Directors. But should all vulnerabilities be
considered emergencies? Are all vulnerabilities
worthy of your security budget dollars?
One of the basic tenets of risk management is that not
every vulnerability presents a threat to a network.
Only a vulnerability that can be exploited is a threat
to business operations and information assets. Threat
modeling helps to identify those vulnerabilities that
are actually critical in the unique environment that is
your network. The threat modeling process should:

1. Identify potential threats and the
conditions that must exist for an attack
to be successful

2. Provide information about how existing
safeguards affect required attack
conditions

3. Provide information about which attack
condition and vulnerability remediation
activities add the most value

4. Help you understand which conditions or
vulnerabilities, when eliminated or
mitigated, affect multiple threats; this
optimizes your security investment

Secure Coding
It is true that most of the security bugs sneak in the
application during development phase. Security
Issues during coding phase include the language
choice, development environment, coding
conventions, coding guidelines, baselines for

security, documents for sensitive data handling,
implementation of security features and integration
with external applications or systems.
Establish Secure Coding Guidelines the process must
mandate it for the developers to follow the guidelines
for secure coding. There is a lot of information
available for specific techniques for writing secure
code on all different technologies. This information
must be utilized to avoid coding errors. Ideally these
practices are believed to be taught to the developers
during the education phase. Hence, the important task
here would be to ensure that these practices are
followed across all the code modules and the defects
are found at the early stage rather than the code being
ready for deployment.
Many organizations take up premium tasks of using
specialized tools for secure code review. Security
Code Review tools available commercially are
utilized to identify issues earlier in the cycle.
However, automated code reviews are not very
effective in analyzing all the security defects in the
application. Hence critical parts of the applications
must be provisioned for manual code review from
peers or experts. Start rating the security defects to
understand the impact and complexity of the issue.
These metrics many a times helps you analyze the
trade-off of performance because of intense security.
Strike a balance between security and performance
by verifying the business impact, complexity of
attack and efforts required to mitigate the attack. The
commonly accepted secure coding practices include
data validation (input and output validation),
segregation of trust, no hard coded secrets, proper
error and exception handling, safe coding constructs
to prevent known injection attacks and proper
auditing and logging of application.

Secure Testing
It is important to recognize that the cost of security
increases as you move down the SDLC. Strategize to
test early and testing often to prevent defects being
leaked at a later stage and minimize the impact.
Organizations usually take up software security at
this phase by adopting black box testing of
applications to identify the potential risks. However,

 [Dabey, 1(7): Sep., 2012] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[399-405]

the security bugs identified have a small window of
closure and most of times end up in the production
software by not being patched or having a temporary
fix which may not be full proof. Black box testing
has matured in very well in the industry.
The number of software code analysis or application
scanners has increased exponentially in the market.
Automated scanners provide vulnerability assessment
or penetration testing. Security testing services are
becoming a standard offering of many firms.
Professional training for application security testers is
widely available. One of the effective ways of
handling security testing is to have a small team of
security experts in house to take care of the testing or
invest in an automated scanner to identify
vulnerabilities. The option of hiring a third party to
take penetration testing service may cost you
premium.
Follow the security testing with a list of checks for
the applications for comprehensive tests. The list
must include the following checks at a minimum.

Deploy And Maintenance
It is observed many times that the development
environment is lot more different than the production
environment. The application in development
environment is by default insecure because of many
configurations in place like debugging enabled, trace
enabled, accounts with known usernames and
passwords, backup files present in the directories, etc.
These are potential vulnerabilities found in the
production boxes often categorized as Deployment
Issues.
Few of the configuration checks include:

Conclusion
Security and development teams can work together—
they just need to look for common areas in which
they can make improvements. Security teams focus
on confidentiality and integrity of data, which can
sometimes require development teams to slow down
and assess code differently. At the same time,
business units require developers to produce and
revise code more quickly than ever, resulting in
developers focusing on what works best instead of
what is most secure.
This difference in focus does not mean that either
side is wrong. In fact, both teams are doing exactly
what they’re supposed to do. However, in order to
facilitate teams accomplishing both sets of goals
(timely release of both functional and secure
software) and working together more fluidly, changes
to tools and processes are necessary.
To begin, the organization needs to make a
commitment to code security and evaluate the tools
that can help accomplish that goal. A combination of
static and dynamic code analysis tools usually works
best, although using multiple tools often costs more
and requires more time for training and
implementation. These tools, then, should be
integrated into development preferably in a largely
automated manner to avoid slowing down
development cycles as much as possible. Security
teams should be involved in bug report reviews from
both kinds of tools, and a continuous feedback loop
should be created that allows all stakeholders to
participate in development projects as appropriate.
Although this process will take time, the benefits will
manifest in the form of a significantly more secure
application landscape.

 [Dabey, 1(7): Sep., 2012] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[399-405]

References

[1] CERT Software Engineering Institute
Software Assurance -
http://www.cert.org/work/software_assuranc
e.html

[2] Microsoft® Security Development Lifecycle
http://www.microsoft.com/security/sdl/defau
lt.aspx

[3] The Open Web Application Security Project
(OWASP) –
https://www.owasp.org/index.php/Main_Pag
e

[4] The Build Security In Maturity Model
(BISSM) - http://bsimm.com/

[5] Building Security in Maturity Model
(version 2) May 2010. Gary McGraw,
Ph.D., Brian Chess, Ph.D., & Sammy
Migues

[6] Secure and resilient software, requirements,
test cases, and testing methods. (2011).
Merkow, M. S., & Raghavan, L., Auerbach
Publishers

[7] Joseph Migga Kizza: A Guide to Computer
Network Security, Springer, 2008, pp112-
115.

[8] http://en.wikipedia.org/wiki/Timeline_of_co
mputer_

[9] Security_hacker_history
[10] Jari Råman: Regulating Secure Software

Development. Analysing the potential
regulatory solutions for the lack of security
in software, Lapland University Press, 2006,
pp 2.

[11] Hao Wang, Andy Wang: Security Metrics
for Software System, ACM Southeast
Regional Conference, Proceedings of the
47th Annual Southeast Regional Conference,
2009, ACM-SE 47, pp 1-2.

[12] J. A. Wang, M. Xia, and F. Zhang, “Metrics
for Information Security Vulnerabilities,
Journal of Applied Global Research,
Volume 1, No. 1, 2008, pp 48-58.

[13] http://www.executivebrief.com/project-
management/software security-standards-
project-security /P1/

[14] Julia H. Allen, Sean Barnum, Robert J.
Ellison, Gary McGraw, Nancy R. Mead:
Software Security Engineering: A Guide for
Project Managers, Addison Wesley
Professional, 2008, pp 6-8.

[15] http://www.isc2.org/uploadedFiles/(ISC)2_P
ublic_Content/Certification_Programs/CSSL
P/CSSLP WhitePaper.pdf

[16] http://cwe.mitre.org/documents/sources/Sev
en

[17] PerniciousKingdoms.pdf
[18] Oglund, G. and McGraw, G., Exploiting

Software: How toBreak Code. Boston:
Addison-Wesley, 2006 pp 1-4.

[19] http://searchwarp.com/swa268042.htm
[20] Gary McGraw, Software Security: Building

Security In, Addison Wesley Software
Security Series, 2006, pp 36.

[21] S. Sodiya, S. A. Onashoga, and O. B. Ajayi:
Towards Building Secure Software Systems,
Volume 3, 2006, pp 636 –645.

[22] Vladimir Golubev: Using Of Computer
Systems Accountability Technologies in The
Fight Against Cybercrimes, Computer
Crime Research Center, downloadable from
http://www.crimeresearch.

[23] org/library/Using.htm
[24] Neil Daswani, Christoph Kern, Anita

Kesavan: Foundations of security What
Every Programmer Needs to Know,
APRESS, 2007, pp 44.

[25] http://www.albion.com/security/intro-4.html
[26] http://security.practitioner.com/introduction/

infosec_2.htm
[27] http://www.yourwindow.to/informationsecur

ity/
[28] gl_confidentialityintegrityandavailabili.htm
[29] http://en.wikipedia.org/wiki/Access_control
[30] Howard, M., Lipner, S., "The Security

Development
[31] Lifecycle - SDL: A Process for Developing

Demonstrably More Secure Software",
Microsoft Press, 2006.

[32] Gregoire, J., Buyens, K., Win, B. D.,
Scandarioto, R., Joosen, W., "On the Secure
Software DevelopmentProecss: CLASP and
SDL Compared", In Proceedings of the
Third International Workshop on Software
Engineering for Secure Systems, 2007.

[33] Beznosov, K., Kruchten, P., “Towards Agile
SecurityAssurance” In Proceedings of the
2004 Workshop on New Security
Paradigms, 2005.

[34] Beznosov, K., "Extreme Security
Engineering: On

[35] Employing XP Practices to Achieve ‘Good
Enough

[36] Security’ without Defining It.", First ACM
Workshop on Business Driven Security
Engineering, 2003.

[37] Flechais, I., Sasse, M. A., Hailes, S. M. V.,
“A process for developing secure and usable
systems”, In Proceedings of the 2003

 [Dabey, 1(7): Sep., 2012] ISSN: 2277-9655

http: // www.ijesrt.com (C) International Journal of Engineering Sciences & Research Technology[399-405]

Workshop on New Security Paradigms,
2003.

[38] Grance, T., Hash, J., Stevens, M., "Security
[39] Considerations in the Information System

Development Life Cycle", NIST, Computer
Security Division, NIST Special Publication
800-64, REV. 1, 2004.

[40] Swanson, M., etc, "Security Metrics Guide
for

[41] Information Technology Systems", NIST,
Computer

[42] Security Division, NIST Special Publication
800-55,2003.

[43] Agile Alliance, "Manifesto for Agile
Software

[44] Development", 2005,
http://www.agilealliance.org.

